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ABSTRACT
In this paper, a non-mediated multi-issue bilateral bargain-
ing model for complex utility functions is presented. Before
the negotiation process, a genetic algorithm (GA) is used to
sample one’s own utility function. During the negotiation
process, genetic operators are applied over the opponent’s
and one’s own proposals in order to sample new proposals
that are interesting for both parties.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems, Intelligent agents

General Terms
Negotiation algorithms, Negotiation experimentation
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1. INTRODUCTION
In the last few years, there has been a growing interest in

studying negotiation models where agents have their pref-
erences represented as complex non-linear utility functions.
However, most of the works focus on mediated protocols
whereas only a small body of the literature studies the prob-
lem when no mediator is available[2, 4].

In this work, a non-mediated bilateral multi-issue negotia-
tion model where agent preferences are private is presented.
The developed strategy is based on the inspiring work of Lai
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et al. [2]. The main difference between the two approaches
resides in the fact that in our work it is assumed that agents
are not capable of sampling completely their utility func-
tions. A genetic algorithm (GA) is employed by each agent
before the negotiation process in order to sample one’s own
utility function. During the negotiation process, each agent
applies genetic operators over received proposals and their
own proposals. The results show that the use of genetic op-
erators during the negotiation process leads to better results
in distance to the Nash bargaining point, distance to clos-
est Pareto optimal point, and number of negotiation rounds.
More importantly, it is also shown that the use of genetic
operators greatly reduces the impact of working with a large
number of issues.

2. NEGOTIATION MODEL
The employed protocol is a bilateral barganing protocol

where each agent is allowed to propose up to k different offers
each round [2]. We propose a time-dependent negotiation
strategy that can be summarized as follows:

1. Pre-negotiation: Sample utility functions. Each
agent samples its own utility function by means of
a niching genetic algorithm (GA) that uses crowding
mechanisms [3]. This GA assures that the final pop-
ulation of offers converges to multiple, highly fit, and
significantly different offers. This initial population is
called P .

2. Sample new offers At the start of each round, an
agent calculates its current iso-utility curve from P .
For each offer xi received from the opponent in the
previous round, the agent selects the M offers from
the iso-utility curve that are more similar. A two-
parents crossover operator is applied ncross times tak-
ing as parents xi and each one of the M offers selected
previously. A mutation operator is also applied nmut

times over xi and new offers generated from crossover
operations. The result are new offers that have good
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Euclidean distance to Nash Bargaining Point
N.issues ppnew = 70 ppnew = 0
4 [0.12-0.13] [0.18-0.19]
5 [0.13-0.14] [0.23-0.24]
6 [0.16-0.17] [0.30-0.31]

Table 1: Nash Distance: The table shows the confi-
dence intervals (95%) of the average Nash distance

Euclidean distance to closer Pareto Optimal point
N.issues ppnew = 70 ppnew = 0
4 [0.034-0.039] [0.090-0.097]
5 [0.040-0.045] [0.129-0.137]
6 [0.049-0.053] [0.180-0.189]

Table 2: Pareto Distance: The table shows the confi-
dence intervals (95%) of the average Pareto distance

genetic material (utility) for one’s own agent and the
opponent. New offers are added to a special population
Pnew.

3. Select offers to send. Two iso-utility curves are cal-
culated from P and Pnew. A percentage ppnew of the
k proposals is selected from the iso-utility curve calcu-
lated from Pnew, whereas the rest is selected from the
iso-utility curve calculated from P . In both cases, the
offers selected are the ones that are closer (more simi-
lar) to the previous offers sent by the opponent. When
ppnew=0, the strategy ignores new offers sampled dur-
ing the negotiation process, whereas when ppnew=1,
the strategy ignores the offers sampled during the pre-
negotiation.

3. EXPERIMENTS
The negotiation model was tested using the weighted con-

straint utility functions proposed by Ito et al. [1]. For each
number of issues, a total of 100 negotiation cases were gener-
ated with the following settings: (i) number of integer issues
ni = {4,5,6}. The domain for each issue was set to [0, 9];
(ii) ni∗5 uniformly distributed constraints per agent. For
instance if ni=4, there are 5 unary constraints, 5 binary con-
straints, 5 trinary constraints and 5 quaternary constraints;
(iii) utility for each n-ary constraint drawn randonmly from
[0, 100 ∗ n]. The utility is normalized to [0,1] for theoretical
results; (iv) constraint width for each issue uniformly drawn
from [2, 4]; (v) agent deadline d = 10. Both agents concede
linearly with respect to their private deadline; (vi) number
of proposals per round k = 5; (vii) agent reservation utility
RU = 0.

The euclidean distance to the closest Pareto frontier point,
the euclidean distance to the Nash bargaining point, and the
number of negotiation rounds were taken as quality mea-
sures for the experiments. The proposed strategy was con-
figured with |P |=8192, ppnew = 70%, M = 15, ncross = 5,
and nmut = 3. The proposed strategy is compared with a
negotiation strategy that only samples before the negotia-
tion process (ppnew = 0%). The results can be observed in
Tables 1, 2, and 3.

The three tables present similar results in their respective
measures. The proposed strategy (ppnew=70%) statistically

Number of negotiation rounds
N.issues ppnew = 70 ppnew = 0
4 [3.79-3.88] [4.44-4.55]
5 [4.12-4.21] [5.21-5.32]
6 [4.27-4.34] [5.72-5.83]

Table 3: Negotiation rounds: The table shows the
confidence intervals (95%) of the average number of
negotiation rounds

outperforms the negotiation strategy that only samples be-
fore the negotiation process (ppnew=0%) in every proposed
quality measure. The use of genetic operators to sample new
offers during the negotiation process allows to achieve better
results since it is able to implicitley learn the preferences of
the opponent and sample new offers that are interesting for
both parties. It can be observed that there is a tendency for
the performance of the strategy that only samples before the
negotiation process (ppnew = 0) to be greatly degraded as
the number of issues gets larger. Nevertheless, this decrease
is greatly reduced when genetic operators are applied during
the negotiation process (ppnew = 70%).

4. CONCLUSIONS
In this paper we have proposed a negotiation model for

non-mediated bilateral bargaining with complex utility func-
tions, which has not been widely covered in the literature. It
assumes that utility functions cannot be sampled in a com-
plete way. Before the negotiation process, each agent uses a
niching genetic algorithm in order to sample highly fit and
significantly different offers. During the negotiation process,
genetic operators are applied over one’s own offers and oppo-
nent offers in order to sample new offers that are interesting
for both parties. Results show that sampling during the
negotiation process by means of genetic operators provides
better solutions than strategies that only sample before the
negotiation process. Moreover, the designed strategy results
more feasible for scenarios with a large number of issues.
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